SciPy Graphs

Working with Graphs

Graphs are an essential data structure.

SciPy provides us with the module scipy.sparse.csgraph for working with such data structures.


Adjacency Matrix

Adjacency matrix is a nxn matrix where n is the number of elements in a graph.

And the values represents the connection between the elements.

Example:

For a graph like this, with elements A, B and C, the connections are:

A & B are connected with weight 1.

A & C are connected with weight 2.

C & B is not connected.

The Adjency Matrix would look like this: A B C A:[0 1 2] B:[1 0 0] C:[2 0 0]

Below follows some of the most used methods for working with adjacency matrices.


Connected Components

Find all of the connected components with the connected_components() method.

Example

import numpy as np
from scipy.sparse.csgraph import connected_components
from scipy.sparse import csr_matrix

arr = np.array([
  [0, 1, 2],
  [1, 0, 0],
  [2, 0, 0]
])

newarr = csr_matrix(arr)

print(connected_components(newarr))

Try it Yourself »



Dijkstra

Use the dijkstra method to find the shortest path in a graph from one element to another.

It takes following arguments:

  1. return_predecessors: boolean (True to return whole path of traversal otherwise False).
  2. indices: index of the element to return all paths from that element only.
  3. limit: max weight of path.

Example

Find the shortest path from element 1 to 2:

import numpy as np
from scipy.sparse.csgraph import dijkstra
from scipy.sparse import csr_matrix

arr = np.array([
  [0, 1, 2],
  [1, 0, 0],
  [2, 0, 0]
])

newarr = csr_matrix(arr)

print(dijkstra(newarr, return_predecessors=True, indices=0))

Try it Yourself »


Floyd Warshall

Use the floyd_warshall() method to find shortest path between all pairs of elements.

Example

Find the shortest path between all pairs of elements:

import numpy as np
from scipy.sparse.csgraph import floyd_warshall
from scipy.sparse import csr_matrix

arr = np.array([
  [0, 1, 2],
  [1, 0, 0],
  [2, 0, 0]
])

newarr = csr_matrix(arr)

print(floyd_warshall(newarr, return_predecessors=True))

Try it Yourself »


Bellman Ford

The bellman_ford() method can also find the shortest path between all pairs of elements, but this method can handle negative weights as well.

Example

Find shortest path from element 1 to 2 with given graph with a negative weight:

import numpy as np
from scipy.sparse.csgraph import bellman_ford
from scipy.sparse import csr_matrix

arr = np.array([
  [0, -1, 2],
  [1, 0, 0],
  [2, 0, 0]
])

newarr = csr_matrix(arr)

print(bellman_ford(newarr, return_predecessors=True, indices=0))

Try it Yourself »


Depth First Order

The depth_first_order() method returns a depth first traversal from a node.

This function takes following arguments:

  1. the graph.
  2. the starting element to traverse graph from.

Example

Traverse the graph depth first for given adjacency matrix:

import numpy as np
from scipy.sparse.csgraph import depth_first_order
from scipy.sparse import csr_matrix

arr = np.array([
  [0, 1, 0, 1],
  [1, 1, 1, 1],
  [2, 1, 1, 0],
  [0, 1, 0, 1]
])

newarr = csr_matrix(arr)

print(depth_first_order(newarr, 1))

Try it Yourself »


Breadth First Order

The breadth_first_order() method returns a breadth first traversal from a node.

This function takes following arguments:

  1. the graph.
  2. the starting element to traverse graph from.

Example

Traverse the graph breadth first for given adjacency matrix:

import numpy as np
from scipy.sparse.csgraph import breadth_first_order
from scipy.sparse import csr_matrix

arr = np.array([
  [0, 1, 0, 1],
  [1, 1, 1, 1],
  [2, 1, 1, 0],
  [0, 1, 0, 1]
])

newarr = csr_matrix(arr)

print(breadth_first_order(newarr, 1))

Try it Yourself »


Test Yourself With Exercises

Exercise:

Insert the missing method to find all the connected components:import numpy as np from scipy.sparse.csgraph import connected_components from scipy.sparse import csr_matrix arr = np.array([ [0, 1, 2], [1, 0, 0], [2, 0, 0] ]) newarr = csr_matrix(arr) print((newarr))


Comments

Leave a Reply

Your email address will not be published. Required fields are marked *